
Robust Runtime Optimization and
Skew-Resistant Execution of Analytical

SPARQL Queries on Pig

Spyros Kotoulas12, Jacopo Urbani2, Peter Boncz32, and Peter Mika4

1 IBM Research, Ireland Spyros.Kotoulas@ie.ibm.com
2 Vrije Universiteit Amsterdam, The Netherlands jacopo@cs.vu.nl

3 CWI Amsterdam, The Netherlands boncz@cwi.nl
4 Yahoo! Research Barcelona, Spain pmika@yahoo-inc.com

Abstract. We describe a system that incrementally translates SPARQL
queries to Pig Latin and executes them on a Hadoop cluster. This system
is designed to work efficiently on complex queries with many self-joins
over huge datasets, avoiding job failures even in the case of joins with
unexpected high-value skew. To be robust against cost estimation er-
rors, our system interleaves query optimization with query execution,
determining the next steps to take based on data samples and statistics
gathered during the previous step. Furthermore, we have developed a
novel skew-resistant join algorithm that replicates tuples corresponding
to popular keys. We evaluate the effectiveness of our approach both on a
synthetic benchmark known to generate complex queries (BSBM-BI) as
well as on a Yahoo! case of data analysis using RDF data crawled from
the web. Our results indicate that our system is indeed capable of pro-
cessing huge datasets without pre-computed statistics while exhibiting
good load-balancing properties.

1 Introduction

The amount of Linked Open Data (LOD) is strongly growing, both in the form
of an ever expanding collection of RDF datasets available on the Web, as well
semantic annotations increasingly appearing in HTML pages, in the form of
RDFa, microformats, or microdata such as schema.org.

Search engines like Yahoo! crawl and process this data in order to provide
more efficient search. Applications built on or enriched with LOD typically em-
ploy a warehousing approach, where data from multiple sources is brought to-
gether, and interlinked (e.g. as in [11]).

Due to the large volume and, often, dirty nature of the data, such Extrac-
tion, Transformation and Loading (ETL) processes can easily be translated into
“killer” SPARQL queries that overwhelm the current state-of-the-art in RDF
database systems. Such problems typically come down to formulating joins that
produce huge results, or to RDF database systems that calculate the wrong join
order such that the intermediate results get too large to be processed. In this

paper, we describe a system that scalably executes SPARQL queries using the
Pig Latin language [16] and we demonstrate its usage on a synthetic benchmark
and on crawled Web data. We evaluate our method using both a standard cluster
and the large MapReduce infrastructure provided by Yahoo!.

In the context of this work, we are considering some key issues:

Schema-less. A SPARQL query optimizer typically lacks all schema knowledge
that a relational system has available, making this task more challenging. In
a relational system, schema knowledge can be exploited by keeping statistics,
such as table cardinalities and histograms that capture the value and frequency
distributions of relational columns. RDF database systems, on the other hand,
cannot assume any schema and store all RDF triples in a table with Subject,
Property, Object columns (S,P,O). Both relational column projections as well as
foreign key joins map in the SPARQL equivalent into self-join patterns. There-
fore, if a query is expressed in both SQL and SPARQL, on the physical algebra
level, the plan generated from SPARQL will typically have many more self-joins
than the relational plan has joins. Because of the high complexity of join order
optimization as a function of the number of joins, SPARQL query optimization
is more challenging than SQL query optimization.

MapReduce and Skew. Linked Open Data ETL tasks which involve cleaning,
interlinking and inferencing have a high computational cost, which motivates
our choice for a MapReduce approach. In a MapReduce-based system, data is
represented in files and that can come from recent Web crawls. Hence, we have
an initial situation without statistics and without any B-trees, let alone multiple
B-trees. One particular problem in raw Web data is the high skew in join keys
in RDF data. Certain subjects and properties are often re-used (most notorious
are RDF Schema properties) which lead to joins where certain key-values will
be very frequent. These keys do not only lead to large intermediate results, but
can also cause one machine to get overloaded in a join job and hence run out of
memory (and automatic job restarts provided by Hadoop will fail again). This is
indeed more general than joins: in the sort phase of MapReduce, large amounts
of data might need to be sorted on disk, severely degrading performance.

SPARQL on Pig. The Pig Latin language provides operators to scan data
files on a Hadoop cluster that form tuple streams, and further select, aggregate,
join and sort such streams, both using ready-to-go Pig relational operators as
well as using user-defined functions (UDFs). Each MapReduce job materializes
the intermediate results in files that are replicated in the distributed filesystem.
Such materialization and replication make the system robust, such that the jobs
of failing machines can be restarted on other machines without causing a query
failure. However, from the query processing point of view, this materialization
is a source of inefficiency. The Pig framework attempts to improve this situation
by compiling Pig queries into a minimal amount of Hadoop jobs, effectively
combining more operators in a single MapReduce operation. An efficient query
optimization strategy must be aware of it and each query processing step should
minimize the number of Hadoop jobs.

Our work addresses these challenges and proposes an efficient translation of
some crucial operators into Pig Latin, making them robust enough to deal with
the issues typical of large data collections.

Contributions. We can summarize the contributions of this work as follows. (i)
We have created a system that can compute complex SPARQL queries on huge
RDF datasets. (ii) We present a runtime query optimization framework that is
optimized for Pig in that it aims at minimizing the number of MapReduce jobs,
therefore reducing query latency. (iii) We describe a skew-resistant join method
that can be used when the runtime query optimization discovers the risk for
a skewed join distribution that may lead to structural machine overlap in the
MapReduce cluster. (iv) We evaluate the system on a standard cluster and a
Yahoo! Hadoop cluster of over 3500 machines using synthetic benchmark data,
as well as real Web crawl data.

Outline. The rest of the paper is structured as follows. In Section 2 we present
our approach and describe some of its crucial parts. In Section 3 we evaluate
our approach on both synthetic and real-world data. In Section 4 we report on
related work. Finally, in Section 5, we draw conclusions and discuss future work.

2 SPARQL with Pig: overview

In this section, we present an approach that consists of a mapping of the SPARQL
1.1 algebra to Pig Latin and a set of techniques to allow efficient querying over
data on Web-scale. We have chosen to translate the SPARQL 1.1 algebra to Pig
Latin instead of making a direct translation to a physical algebra in order to
readily exploit optimizations in the Pig engine. While this work is the first at-
tempt to encode full SPARQL 1.1 in Pig, a complete description of such process
is elaborate and goes beyond the scope of this paper.

The remaining of this section is organized as follows: in Sections 2.1 and 2.2,
we present a method for runtime query optimization and query cost calculation
suitable for a batch processing environment like MapReduce. Finally, in subsec-
tion 2.3, we present a skew detection method and a specialized join predicate
suitable for parallel joins under heavy skew, frequent on Linked Data corpora.

2.1 Runtime query optimization

We adapt the ROX query optimization algorithm [1, 10] to SPARQL and MapRe-
duce. ROX interleaves query execution with join sampling, in order to improve
result set estimates. Our specific context differs to that of ROX in that:

– SPARQL queries generate a large number of joins, which often have a multi-
star shape [5].

– The overhead of starting MapReduce jobs in order to perform sampling is
significant. The start-up latency for any MapReduce job lies within tens of
seconds and minutes.

Algorithm 1 Runtime optimization

1 void optimize joins(J) {
2 execute(J)
3 L0:=(J)
4 i:=1
5 while (Li−1 6= ∅)
6 for (j ∈ Li−1)
7 for (I ∈ {L0...Li−1})
8 for (k ∈ I)
9 if (j 6= k)

10 Li.add(construct(j,k))
11 if (stddev(cost(Li))/
12 mean(cost(Li)) < t)
13 prune(Li)
14 sample(Li)
15 i:=i + 1
16 }

– Given the highly parallel nature of the environment, executing several queries
at the same time has little impact on the execution time of each query.

Algorithm 1 outlines the basic block of our join order optimization algo-
rithm. To cope with the potentially large number of join predicates in SPARQL
queries, we draw from dynamic programming and dynamic query optimization
techniques, constructing the plans bottom-up and partially executing them.

Initially, we extract from the dataset all statement patterns and calculate
their cardinalities. From initial experiments, given the highly parallel nature
of MapReduce, we have concluded that the cost of this operation is amortized
over the execution of the query since we are avoiding several scans over the
entire input. Then, we perform a series of construct-prune-sample cycles. The
construct phase generates new solutions from the partial solutions in the previous
cycles. These are then pruned according to their estimated cost. The remaining
ones are sampled and/or partially executed. The pruning and sampling phases
are optional. We will only sample if stddev(costs)/mean(costs) is higher than
some given threshold, so as to avoid additional optimization overhead if the cost
estimates for the candidate plans are not significantly different.
Construct During the construct phase (lines 6-10 in Algorithm 1), the results
of the previous phases are combined to generate new candidate (partial) plans.
A new plan is generated by either adding an argument to an existing node when
possible (e.g. making a 2-way join a 3-way join) or by creating a new join node.
Prune We pick the k% cheapest plans in the previous phase, using the cost cal-
culation mechanism described in Section 2.2. The remaining plans are discarded.
Sample To improve the accuracy of the estimation, we fully execute the plan
up to depth 1 (i.e. the entire plan minus the upper-most join). Then, we use
Algorithm 2 to perform bi-focal sampling [6].

Algorithm 2 Bi-focal sampling in Pig

1 DEFINE bifocal sampling(L, R, s, t)
2 RETURNS FC {
3 LS = SAMPLE L s;
4 RS = SAMPLE R s;
5 LSG = GROUP LS BY S;
6 RSG = GROUP RS BY S;
7 LSC = FOREACH LSG GENERATE flatten(group), COUNT(LSG) as c;
8 RSC = FOREACH RSG GENERATE flatten(group), COUNT(RSG) as c;
9 LSC = FOREACH LSC GENERATE group::S as S ,c as c;

10 RSC = FOREACH RSC GENERATE group::S as S ,c as c;
11 SPLIT LSC INTO LSCP IF c>=t, LSCNP IF c<t;
12 SPLIT RSC INTO RSCP IF c>=t, RSCNP IF c<t;
13
14 // Dense
15 DJ = JOIN LSCP BY S, RSCP BY S using ’replicated’;
16 DJ = FOREACH RA GENERATE LSCP::c as c1, RSCP::c as c2;
17 // Left sparse
18 RA = JOIN RSC BY S, LSCNP BY S;
19 RA = FOREACH RA GENERATE LSCNP::c as c1, RSC::c as c2;
20
21 // Right sparseLA = JOIN LSC BY S, RSCNP BY S;
22 LA = FOREACH LA GENERATE LSC::c as c1, RSCNP::c as c2;
23 // Union results
24 AC = UNION ONSCHEMA DA, RA, LA;
25
26 $FC = FOREACH AC GENERATE c1∗c2 as c;
27 }

There is a number of salient features in our join optimization algorithm:

– There is a degree of speculation, since we are sampling only after constructing
and pruning the plans. We do not select plans based on their calculated cost
using sampling, but we are selecting plans based on the cost of their ‘sub-
plans’ and the operator that will be applied.

– Nevertheless, our algorithm will not get ‘trapped’ into an expensive join,
since we only fully execute a join after we have sampled it in a previous
cycle.

– Since we are evaluating multiple partial solutions at the same time, it is
essential to re-use existing results for our cost estimations and to avoid un-
necessary computation. Since the execution of Pig scripts and our run-time
optimization algorithm often materialize intermediate results anyway, the
latter are re-used whenever possible.

2.2 Pig-aware cost estimation

Using a MapReduce-based infrastructure gives rise to new challenges in cost
estimation. First, queries are executed in batch and there is significant overhead
in starting new batches. Second, within batches, there is no opportunity for
sideways information passing [14], due to constraints in the programming model.
Third, when executing queries on thousands of cores, load-balancing becomes
very important, often outweighing the cost for calculating intermediate results.
Fourth, random access to data is either not available or very slow since there
are no data indexes. On the other hand, reading large portions of the input is
relatively cheap, since it is an embarrassingly parallel operation.

In this context, we have developed a model based on the cost of the following:
Writing a tuple (w); Reading a tuple (r); The cost of a join per tuple. In Hadoop,
a join can be performed either during the reduce phase (jr), essentially a com-
bination of a hash-join between machines and a merge-join on each machine, or
during the map phase (jm), by loading one side in the memory of all nodes, es-
sentially a hash-join. Obviously, the latter is much faster than the former, since
it does not require repartitioning of the data on one side or sorting, exhibits
good load-balancing properties, and requires that the input is read and written
only once; The depth of the join tree(d), when considering only the reduce-phase
joins. This is roughly proportional to the number of MapReduce jobs required
to execute the plan. Considering the significant overhead of executing a job, we
consider this separately from reading and writing tuples.

The final cost for a query plan is calculated as the weighted sum of the above,
with indicatory weights being 3 for w, 1 for r, 10 for jr, 1 for jm and a value
proportional to the size of the input for d.

2.3 Dealing with Skew

The significant skew in the term distribution of RDF data has been recognized as
a major barrier to efficient parallelization [12]. In this section, we are presenting
a method to detect skew and a method for load-balanced joins in Pig.
Detecting skew To detect skew (and estimate result set size), we are presenting
an implementation of bi-focal sampling [6] for Pig and report the pseudocode in
Algorithm 2. Similar to join optimization, one of the main goals is to minimize
the number of jobs. L, R, s and t refer to the left side of the join, the right side
of the join, the sampling rate and the number of tuples that the memory can
hold respectively. Initially, we sample the input (lines 3-4), group by the join
keys (lines 6-7) and count the number of occurrences of each key (lines 9-12).
We split each side of the join by key popularity using a fixed threshold, which
is dependent on the amount or memory available to each processing node (lines
19-24). We then perform a join between tuples with popular keys (lines 26-30)
and a join for each side for tuples with non-popular keys and the entire input
(lines 32-40).

This algorithm generates seven MapReduce jobs out of which two are Map-
only jobs that can be executed in parallel and four are jobs with Reduce phases

that happen concurrently in pairs. In fact, it is possible to implement our algo-
rithm in two jobs, programming directly on Hadoop instead of using Pig primi-
tives.

Determining join implementation In Pig, it is up to the developer to choose
the join implementation. In our system, we choose according to the following:

– If all join arguments but one fit in memory, then we perform a replicated
join. Replicated joins are performed on the Map side by loading all arguments
except for one into main memory and streaming through the remaining one.

– If we have a join with more than two arguments and more than one of them
does not fit in memory, we are performing a standard (hash) join.

– If the input arguments or the results of the (sampled) join present significant
skew, we perform the skew-resistant join described in the following section.

Skew-resistant join As a by-product of the bi-focal sampling technique pre-
sented previously, we have the term distribution for each side of the join and
an estimate of the result size for each term. Using this information, we can es-
timate the skew as the ratio of the maximum number of results for any key to
the average number of results over all keys. Hadoop has some built-in resistance
to skewed joins by means of rescheduling jobs to idle nodes, which is sufficient
for cases where some jobs are slightly slower than others. Furthermore, Pig has
a specialized join predicate to handle a skewed join key popularity [7], by virtue
of calculating a key popularity histogram and distributing the jobs according
to this. Nevertheless, neither of these algorithms can effectively handle skewed
joins where a very small number of keys dominates the join. We should further
note that, since there is no communication between nodes after a job execution
has started, a skewed key distribution will cause performance problems even if
the hit rate for those keys is low. This is because MapReduce will still need to
send all the tuples corresponding to these popular keys to a single reduce task.

Our algorithm executes a replicated join for the keys that have a highly
skewed distribution in the input and a standard join for the rest. In other words,
joining on keys that are responsible for load unbalancing is done by replicating
one side on each machine and performing a local hash join. For the remaining
keys, the join is executed by grouping the two sides by the join key and assigning
the execution of each group to a different machine (as is standard in Pig). In
Algorithm 3, we present the Pig Latin code for an example join of expressions A
and B5, on positions O and S respectively. Initially, we sample and extract the
top-k popular terms for each side (lines 6-19), PopularA and PopularB respec-
tively. Then, for each side of the input, we perform two left joins to associate
tuples with PopularA and PopularB (lines 21-31). This allows us to split each
of our inputs to three sets (lines 33-45), marked accordingly in Figure 1:

1. The tuples that correspond to keys that are popular on the other side (e.g.
for expression A the keys in PopularB). For side B, we put an additional

5 for brevity, we have omitted some statements that project out columns that are not
relevant for our algorithm

Not
popular

Popular
in A

Popular
in B

A

Popular
in A and B

Not
popular

Popular
in B

Popular
in A

Popular
in A and B

B
1

1

2 2

3
3

Fig. 1: Schematic representation of the joins to implement the skew-resistant join

requirement, namely that the key is not in PopularB. This is done to avoid
producing the results for tuples that are popular twice.

2. The tuples that correspond to keys that are popular on the same side (e.g.
for expression A the keys in PopularA).

3. The tuples that do not correspond to any popular keys on either side.

We use the above to perform replicated joins for the tuples corresponding to
popular terms and standard joins for the tuples that are not. The tuples in A
corresponding to popular keys in A (APopInA) are joined with the tuples in B
that correspond to popular keys in A using a replicated join (lines 49-50). The
situation is symmetric for B (line 51-52). The tuples that do not correspond to
popular keys from either side are processed using a standard join (line 54). The
output of the algorithm is the union of the results of the three joins.

We should note that our algorithm will fail if APopInB and BPopInA are not
small enough to be replicated to all nodes. But this can only be true if there are
some keys that are popular in both sets. Joins with such keys would anyway lead
to an explosion in the result set (since the result size of each of these popular
keys is the product of their appearances in each side).

3 Evaluation

We present an evaluation of the techniques presented in this paper using syn-
thetic and real data, and compare our approach to a commercial RDF store.

We have used two different Hadoop clusters in our evaluation: a modest clus-
ter, part of the DAS-4 distributed supercomputer, and a large cluster installed
at Yahoo!. The former was used to perform experiments in isolation and consists
of 32 dual-core nodes, with 4GB of RAM and a single HDD each. The Yahoo!
Hadoop cluster we have used in our experiment consists of over 3500 nodes, each
with two quad-core CPUs, 16 GB RAM and 900MB of local space. This cluster
is used in a utility computing fashion and thus we do not have exclusive access,
meaning that we can not exploit the full capacity of the cluster and our runtimes
at any point might be (negatively) influenced by the jobs of other users. We thus
only report actual, but not best possible performance.

Algorithm 3 Skew-resistant join

1 DEFINE skew resistant join(A, B, k)
2 RETURNS result {
3 SA = SAMPLE A 0.01; //Sample first side
4 GA = GROUP SA BY O;
5 GA2 = FOREACH GA GENERATE COUNT STAR(SA), group;
6 OrderedA = ORDER GA2 BY $0 DESC;
7 PopularA = LIMIT OrderedA k;
8 SB = SAMPLE B 0.01; //Sample second side
9 GB = GROUP SB BY S;

10 GB2 = FOREACH GB GENERATE COUNT STAR(SB), group;
11 OrderedB = ORDER GB2 BY $0 DESC;
12 PopularB = LIMIT OrderedB k;
13
14 PA = JOIN A BY O LEFT, PopularA BY O USING ’replicated’;
15 PPA= JOIN PA BY O LEFT, PopularB BY S USING’replicated’;
16 PB = JOIN B BY S LEFT, PopularB BY S USING ’replicated’;
17 PPB= JOIN PB BY S LEFT, PopularA BY S USING ’replicated’;
18
19 SPLIT PPA INTO APopInA IF PopularA::O is not null,
20 APopInB IF PopularB::S is not null, ANonPop IF
21 PopularA::0 is not null and PopularB::S is not null;
22
23 SPLIT PPB INTO BPopInB IF PopularB::S is not null, BPopInA
24 IF PopularA::O is not null and PopularB::S is null, BNonPop
25 IF PopularA::0 in not null and PopularB::S is not null;
26
27 // Perform replicated joins for popular keys
28 JA= JOIN BPopInB BY S, APopInB BY O USING ’replicated’;
29 JB= JOIN APopInA BY S, BPopInA BY S USING ’replicated’;
30 // Standard join for non−popular keys
31 JP = JOIN ANonPop BY O, BNonPop BY S;
32
33 $result = UNION ONSCHEMA JA, JB, JP; }

Query 1B DAS4 1B Y! 10B Y!

1 38m 1h50m 1h17m

2 13m 23m 31m

3 17m 18m 24m

4 38m 1h34m 54m

5 1h4m 3h10m 1h52m

6 48m 34m 1h19m

7 26m 43m 46m

8 1h 1h59m 1h38m

(a) Execution time of the BSBM
queries on 1B data on the DAS-4 and
Yahoo! cluster

Query Cold runtime Warm runtime

1 3m46s 1m48s

2 41s 15s

3 29m 24m5s

4 52m6s 50m55s

5 11m42s 5m19s

6 6s 0.06s

7 50s 9ms

8 39m58s 36m22s

(b) Runtime of the BSBM queries using Vir-
tuoso

Fig. 2: BSBM query execution time

In order to compare our approach with existing solutions, we deployed Vir-
tuoso v7 [4], a top-performing RDF store, on an extremely high-end server: a
4-socket 2.4GHz Xeon 5870 server (40 cores) with 1TB of main memory and 16
magnetic disks in RAID5, running Red Hat Enterprise Linux 6.0.

We chose two datasets for the evaluation. Firstly, the Berlin SPARQL bench-
mark [3], Business Intelligence use-case v3.1 (BSBM-BI). This benchmark con-
sists of 8 analytical query patterns from the e-commerce domain. The choice for
this benchmark is based on the scope of this work, namely complex SPARQL
queries from an analytical RDF workload.

Secondly, we also used our engine for some analytical queries on RDF data
that Yahoo! has crawled from the Web. This data is a collection of publicly
available information on the Web encoded or translated in RDF. The dataset
that we used consists of about 26 billion triples that correspond to about 3.5
terabytes of raw data (328 gigabytes compressed).

3.1 Experiments

In our evaluation, we measured: (i) the performance of our approach for large
datasets. To this end, we launched and recorded the execution time of all the
queries on BSBM datasets of 1 and 10 billion triples. (ii) The effectiveness of our
dynamic optimization technique. To this purpose, we measured the cost of this
process and what is its effect on the overall performance. (iii) The load-balancing
properties of our system. To this end, we have performed a high-level evaluation
of the entire querying process in terms of load balancing, and we have further
focused on the performance of the skew-resistant join, which explicitly addresses
load-balancing issues.
General performance. We have launched all 8 BSBM queries on 1 billion
triples on both clusters and on 10 billion triples using only the Yahoo! cluster.

In Figure 2a, we report the obtained runtimes. We make the following ob-
servations: First of all, the fastest queries (queries 2 and 3) have a runtime of

Listing 1.1: Exploratory SPARQL queries

SELECT (count(?s) as ?f) (min(?s) as ?ex) ?ct ?di ?mx ?mi{
{SELECT ?s (count(?s) as ?ct) (count(distinct ?p) as ?di) (max(?p) as ?mx)

(min(?p) as ?mi) {?s ?p ?o.} GROUP BY ?s}
GROUP BY ?ct ?di ?mx ?mi ORDER BY desc(?f) LIMIT 10000}

SELECT ?p (COUNT(?s) AS ?c) {?s ?p ?o.} GROUP BY ?p ORDER BY ?c

SELECT ?C (COUNT(?s) AS ?n) {?s a ?C.} GROUP BY ?C ORDER BY ?n

a bit less than 20 minutes on the DAS-4 cluster. The slowest is query 5, with
a runtime of about one hour. For the 1B-triple dataset, the execution times on
the Yahoo! cluster are significantly higher than those on the DAS-4 cluster. This
is due to (a) the fact that the Yahoo! cluster is shared with other users, so, we
often need to wait for the jobs of other users to finish execution and (b) the much
larger size of the Yahoo! cluster, introducing additional coordination overhead.

We also note that the runtime does not proportionally increase with the
data size on the Yahoo! cluster: the runtimes for the one and ten billion-triple
datasets are comparable. Such behavior is explained by the fact that a propor-
tional amount of resources is allocated to the size of the input and the (sig-
nificant) overhead to start MapReduce jobs does not increase. Our approach,
combined with the large infrastructure at Yahoo! allows us to scale to much
larger inputs while keeping the runtime fairly constant.

To verify the performance in a real-world scenario and on messy data, we
have launched three non-selective SPARQL queries, reported in Listing 1.1, over
an RDF web crawl of Yahoo!. The first query is used for identifying ”charac-
teristic sets” [13]: frequently co-occurring properties with a subject. The second
identifies all the properties used in the dataset and sorts them according to their
frequency. The third identifies the classes with the most instances. These queries
are typical of an exploratory ETL workload on messy data, aimed at creating a
basic understanding of the structure and properties of a web-crawled dataset.

From the computation point of view, the first two queries have non-bound
properties and the last one has a very non-selective property (rdf:type) . There-
fore they will touch the entire dataset, including problematic properties that
cause skew problems. The runtime of these three queries was respectively 1 hour
and 21 minutes, 29 minutes and 25 minutes. The first query required 6 MapRe-
duce jobs to be computed. The second and third each required 3 jobs.

It is interesting to compare the performance for BSBM against a standard
RDF store (Virtuoso), even if the approaches are radically different. We loaded
10 billion BSBM triples on the platform described previously. This process took
61 hours (about 2.5 days) and was performed in collaboration with the Virtuoso
development team to ensure that the configuration was optimal.

We executed the 8 BSBM queries used in this evaluation and we report the
results in Figure 2b. For some queries, Virtuoso is many orders of magnitude

Query Cost input Cost dyn. Final query

extraction optimizer execution

1 5m58s 12m12s 19m43s

2 4m22s n.a. 9m5s

3 5m46s n.a. 11m58s

4 6m22s 14m41s 16m55s

5 7m37s 34m3s 23m21s

6 8m12s 14m25s 25m10s

7 5m17s 6m17s 14m3s

8 8m7s 25m14s 27m2s

Table 1: Breakdown of query runtimes on 1B BSBM data

faster than our approach (namely, for the simpler queries like queries 1,2, 6 and
7). For the more expensive queries, the difference is less pronounced. However,
this performance comes at the price of a loading time of 61 hours, necessary to
create the database indexes. To load the data and run all the queries on Virtu-
oso, the total runtime amounts to 63 hours, while in our MapReduce approach,
it amounts to 8 hours and 40 minutes. Although we can not generalize this con-
clusion to other datasets, the loading cost of Virtuoso is not amortized for a
single query mix in BSBM-BI.

In this light, the respective advantages of the two systems are in running
many cheap queries for Virtuoso and running a limited number of expensive
queries for our system. Furthermore, our system can exploit existing Hadoop
installations and run concurrently with heterogenous workloads.

Dynamic optimizer. As discussed in Section 2.1, query execution consists of
three phases: (a) triple pattern extraction, (b) best execution plan identification
using dynamic query optimization and (c) full query plan execution.

In Table 1, we summarize the execution time of each of these three phases for
the 8 BSBM queries on the DAS-4 cluster, using the one billion triple dataset.
We observe that extracting the input patterns is an operation that takes between
4 and 8 minutes, depending on the size of the patterns. Furthermore, the cost of
dynamic optimization is significant compared to the total query execution time
and largely depends on the complexity of the query, although, in our approach,
part of the results are calculated during the optimization phase.

Load balancing. As the number of processing nodes increases, load-balancing
becomes increasingly important. In this section, we present the results concerning
the load balancing properties for our approach.

Due to the synchronization model of MapReduce, it is highly desirable that
no task takes significantly longer than others. In Figure 3 (left), we present the
maximum task execution time, divided by the average execution time for all
tasks launched for a query mix on the DAS-4 cluster. The x axis corresponds
both to time and the queries that correspond to each job, the y axis corresponds
to the time it took to execute the slowest task divided by the time it took to

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

m
ax
	
 ru

n(
m
e/
av
g	

ru
n(

m
e	

Query	

Map	
 jobs	

Reduce	
 jobs	

Skew-­‐resistant	
 Join Standard	
 join Skewed	
 Pig	
 join
7.444407 7444407 7.435536 7435536 14712562 14.712562
7.171898 7171898 7.44526 7445260 15222484 15.222484
6.846509 6846509 7.71953 7719530 15480332 15.480332
8.031175 8031175 6.781385 6781385 14579335 14.579335
8.338536 8338536 6.677068 6677068 15064830 15.06483
7.718776 7718776 8.33958 8339580 15276993 15.276993
6.988908 6988908 9.658339 9658339 14605823 14.605823
6.987234 6987234 7.719273 7719273 15448438 15.448438
7.166306 7166306 6.989345 6989345 15904262 15.904262
7.434722 7434722 6.780244 6780244 16028453 16.028453
6.772644 6772644 9.379523 9379523 15436619 15.436619
6.610677 6610677 9.170394 9170394 15667872 15.667872
6.611979 6611979 7.172604 7172604 15001336 15.001336
7.034329 7034329 7.174411 7174411 15178646 15.178646
6.840467 6840467 6.988282 6988282 15921476 15.921476
9.378686 9378686 6.671456 6671456 15537895 15.537895
8.03298 8032980 6.840754 6840754 15661794 15.661794

7.718393 7718393 6.853333 6853333 15069536 15.069536
7.037779 7037779 8.032342 8032342 15553211 15.553211
8.639919 8639919 6.611304 6611304 15081025 15.081025
8.912407 8912407 6.612637 6612637 14829761 14.829761
8.321148 8321148 7.92703 7927030 15708465 15.708465
6.775556 6775556 9.69276 9692760 16503101 16.503101
6.668647 6668647 7.541059 7541059 15830437 15.830437
7.533555 7533555 9.543576 9543576 15471421 15.471421
9.744701 9744701 9.372974 9372974 16146658 16.146658
9.372421 9372421 6.691908 6691908 15919851 15.919851
8.624926 8624926 8.634754 8634754 16158957 16.158957
9.665113 9665113 8.742813 8742813 16278956 16.278956
9.169475 9169475 9.591875 9591875 16268376 16.268376
9.168914 9168914 9.014395 9014395 16426524 16.426524
9.535133 9535133 9.240234 9240234 16924815 16.924815
6.670845 6670845 9.597329 9597329 17012159 17.012159
6.635968 6635968 9.733461 9733461 17161229 17.161229
6.703297 6703297 7.533915 7533915 16974466 16.974466
7.540321 7540321 7.282981 7282981 16785313 16.785313
8.43968 8439680 9.456818 9456818 16547096 16.547096

8.448404 8448404 12.697658 12697658 16767928 16.767928
7.276617 7276617 10.27742 10277420 17718004 17.718004
9.697108 9697108 8.330576 8330576 17527739 17.527739
8.908008 8908008 9.624898 9624898 17242460 17.24246
9.546406 9546406 10.895828 10895828 17566904 17.566904
6.630042 6630042 10.345621 10345621 17645580 17.64558
6.691389 6691389 8.137103 8137103 17825013 17.825013
7.265595 7265595 10.302287 10302287 17380274 17.380274

0	

20	

40	

60	

80	

100	

120	

140	

#R
ec
or
ds
	
 	
 (
m
ill
io
ns
)	

Reduce	
 tasks	

Skew-­‐resistant	
 Join	

Standard	
 join	

Skewed	
 Pig	
 join	

Fig. 3: Maximum task runtime divided by the average task runtime for a query mix
(left). Comparison of load distribution between the skew-resistant join and the standard
Pig join (right).

execute a task, on average. In a perfectly load-balanced system, the values in
y would be equal to 1. In our system, except for a single outlier, the slowest
tasks generally take less than twice the average time, indicating that the load
balancing of our system is good. A second observation is that the load imbalance
is higher in the reduce jobs. This is expected, considering that, in our system,
the map tasks are typically concerned with partitioning the data (and process
data chunks of equal size), while the reduce tasks process individual partitions.

Data skew becomes increasingly significant as the number of processing nodes
increases, since it generates unbalance between the workload of each node. In the
set of experiments described in this section, we analyze the performance of the
skew-resistent join that we have introduced in Section 2.3 to efficiently execute
joins on data with high skew.

To this purpose, we launched an expensive join using the 1 billion BSBM
dataset and we analyzed the performance of the standard and the skew-resistant
join. Our experiments were performed on the DAS-4 cluster, since we required
a dedicated cluster to perform a comparative analysis. Considering that this
platform uses only 32 nodes in total, the effect on the Yahoo! cluster would have
been much more pronounced (since it is several orders of magnitude bigger).

We launched a join that used the predicate of the triples as a key; namely, we
have performed a join of pattern (?s ?p ?o) with pattern (?p ?p1?o1). Such joins
are common in graph analysis, dataset characterization and reasoning workloads.

The runtime using the classical join was of about 1 hour and 29 minutes. On
the other side, the runtime using the skew-resistant join was about 57 minutes.
Therefore, such a join has a significant impact on performance, in the presence
of skew. The impact is even higher if we consider that the skew-resistant join
requires 21 jobs to finish while the classical job requires a single one.

The reason behind such increase of performance lies in the way the join
is performed, and in particular, the amount and distribution of work that the
reduce tasks need to do, as reported in Figure 3 (right). We see that some
reducers receive a much larger number of records than others (these are the ones

at the end of the x axis), implying that some nodes will need to perform much
more computation than others. With the skew-resistant join, all the joins among
popular terms are performed in the map phase and as a result, all the reducers
receive a similar amount of tuples in the input.

We also report reduce task statistics for the the skew-resistant join imple-
mentation in Pig, which calculates a histogram for join keys to better distribute
them across the join tasks. Although the size of the cluster is small enough to
ensure an even load-balance, we note that the standard Pig skewed join sends
almost double the number of records to each reduce task. This is attributed to
fact that our approach shifts much of the load for joining to the Map phase.

4 Related Work

We have compared our approach with previous results from three related ar-
eas: (i) MapReduce query processing (ii) adaptive and sampling-based query
optimization and (iii) cluster-aware SPARQL systems.

In the relational context, similar efforts towards SQL query processing over
a MapReduce cluster are e.g. Hive [21] and HadoopDB [2]. Both projects do not
provide query optimization when data is raw and unprocessed. Data import is a
necessary first step in HadoopDB and may be costly. In Hive, query optimization
based on statistics is only available if the data has been analyzed as a prior step.

On-the-fly query optimization in Manimal [9] analyzes MapReduce jobs on-
the-fly and tries to enhance them by inserting compression code and sometimes
even on-the-fly indexing and index lookup steps.

Situations where there is absence of data statistics in the relational context
of query optimization has led to work on sampling and run-time methods. Our
work reuses the bi-Focal sampling algorithm [6] which came out of the work in
the relational community to use sampling for query result size estimation. In
this work, we have adapted the bi-focal algorithm using the Pig language.

The rigid structure of MapReduce and high latencies in starting new jobs led
us to adjust the dynamic re-optimization strategies to these constraints. Other
interesting run-time approaches are sideways-information passing [14] in large
RDF joins. These are not easily adaptable to the constraints of MapReduce.

With the ever growing sizes of RDF data available, scalability has been a
primary concern and major RDF systems such as Virtuoso [4], 4store [18], and
BigData [20] have evolved to parallel database architectures targeting cluster
hardware. RDF systems typically employ heavy indexing, going as far as creating
replicated storage in all six permutations of triple order [15, 22], which makes
data import a heavy process. Such choice puts them in a disadvantage when
the scenario involves processing huge amounts of raw data. As an alternative
to the parallel database approach, there are several other projects that process
SPARQL queries over MapReduce. PIGSparQL [19] performs a direct mapping
of SPARQL to Pig without focusing on optimization. RAPID+ [17] provides
a limited form of on-the-fly optimization where look-ahead processing tries to

combine multiple subsequent join steps. The adaptiveness of this approach is
however limited compared to our sampling based run-time query optimization.

5 Conclusions

In this paper, we have presented an engine for the processing of complex analytic
SPARQL 1.1 queries, based on Apache Pig. In particular, we have developed:
(i) a translation from SPARQL 1.1 to Pig Latin, (ii) a method for runtime
join optimization based on a cost model suitable for MapReduce-based systems,
(iii) a method for result set estimation and join key skew detection, and (iv) a
method for skew-resistant joins written in Pig. We have evaluated our approach
on a standard and a very large Hadoop cluster used at Yahoo! using synthetic
benchmark data and real-world data crawled from the Web.

In our evaluation, we established that our approach can answer complex
analytical queries over very large synthetic data (10 Billion triples from BSBM)
and over the largest real-world messy dataset in the literature (26 Billion triples).
We compared our performance against a state-of-the-art RDF store on a large-
memory server, even though the two approaches bear significant differences.
While our approach is not competitive in terms of query response time, our
system has the advantage that it does not require a-priori loading of the data,
and thus has far better loading plus querying performance. Furthermore, our
system runs on a shared architecture of thousands of machines, significantly
easing deployment and potentially scaling to even larger volumes of data. We
verified that the load in our system is well-balanced and our skew-resistant join
significantly outperforms the standard join of Pig for skewed key distributions
in the input.

In this work, for the first time, it has been shown that MapReduce is suited
for very large-scale analytical processing of RDF graphs and it is, in fact, better
suited than a traditional RDF store in a setting where a relatively small number
of queries will be posted on a very large dataset.

We see future work in optimizing our architecture to further reduce overhead.
This could be achieved by turning to an approach that adaptively indexes part
of the input or performs part of the computation outside of Pig so as to reduce
the number of jobs. Similarly, parts of the skew-resistant join can be already
calculated during Bi-focal sampling (e.g. sampling and extracting the popular
terms for the input relations).

Although in this paper we have presented our algorithm to handle skewed
joins in the context of Pig, we expect that the result is transferrable to a general
parallel data-processing framework.

Summarizing, in this paper, we have presented a technique with which tech-
nologies like MapReduce and Pig can be employed for large-scale SPARQL
querying. The presented results are promising and set the lead for a new viable
alternative to traditional RDF stores for executing expensive analytical queries
on large volumes of RDF data.

References

1. R. Abdel Kader, P. Boncz, S. Manegold, and M. van Keulen. ROX: run-time
optimization of XQueries. SIGMOD, 2009.

2. A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Rasin, and A. Silberschatz.
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. PVLDB, 2(1):922–933, 2009.

3. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal
on Semantic Web and Information Systems (IJSWIS), 5(2):1–24, 2009.

4. O. Erling. Virtuoso, a Hybrid RDBMS/Graph Column Store. DEBULL, 35(1):3–8,
2012.

5. M. Gallego, J. Fernández, M. Mart́ınez-Prieto, and P. Fuente. An empirical study
of real-world SPARQL queries. In USEWOD2011 at WWW 2011.

6. S. Ganguly, P. Gibbons, Y. Matias, and A. Silberschatz. Bifocal sampling for
skew-resistant join size estimation. SIGMOD Record, 25(2):271–281, 1996.

7. A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanamurthy, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava. Building a high-level dataflow system
on top of Map-Reduce: the Pig experience. PVLDB, 2(2):1414–1425, 2009.

8. M. Ivanova, M. Kersten, N. Nes, and R. Gonçalves. An architecture for recycling
intermediates in a column-store. TODS, 35(4):24, 2010.

9. E. Jahani, M. Cafarella, and C. Ré. Automatic Optimization for MapReduce
Programs. PVLDB, 4(6):385–396, 2011.

10. R. Kader, M. van Keulen, P. Boncz, and S. Manegold. Run-time Optimization
for Pipelined Systems. Proceedings of the IV Alberto Mendelzon Workshop on
Foundations of Data Management, 2010.

11. G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, C. Sizemore, M. Smethurst,
C. Bizer, and R. Lee. Media meets semantic web — how the BBC uses DBpe-
dia and linked data to make connections. ESWC 2009.

12. S. Kotoulas, E. Oren, F. van Harmelen, and F. van Harmelen. Mind the data skew:
distributed inferencing by speeddating in elastic regions. WWW, 2010.

13. T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estima-
tion for RDF queries with multiple joins. ICDE, 2011.

14. T. Neumann and G. Weikum. Scalable join processing on very large RDF graphs.
SIGMOD, 2009.

15. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19(1):91–113, 2010.

16. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-
so-foreign language for data processing. SIGMOD, 2008.

17. P. Ravindra, V. Deshpande, and K. Anyanwu. Towards scalable RDF graph an-
alytics on MapReduce. In Proceedings of the 2010 Workshop on Massive Data
Analytics on the Cloud, page 5. ACM, 2010.

18. M. Salvadores, G. Correndo, S. Harris, N. Gibbins, and N. Shadbolt. The design
and implementation of minimal RDFS backward reasoning in 4store. The Semanic
Web: Research and Applications, pages 139–153, 2011.

19. A. Schätzle and G. Lausen. PigSPARQL: mapping SPARQL to Pig Latin. SWIM:
the 3th International Workshop on Semantic Web Information Management, 2011.

20. L. SYSTAP. Bigdata R©.
21. A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu,

and R. Murthy. Hive: a petabyte scale data warehouse using Hadoop. ICDE, 2010.
22. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic

web data management. PVLDB, 1(1):1008–1019, 2008.

